Cluster algebras arising from cluster tubes

نویسندگان

  • Yu Zhou
  • Bin Zhu
چکیده

We study the cluster algebras arising from cluster tubes with rank bigger than 1. Cluster tubes are 2−Calabi-Yau triangulated categories which contain no cluster tilting objects, but maximal rigid objects. Fix a maximal rigid object T in the cluster tube Γn of rank n (n > 1). For any indecomposable rigid object M in Γn, we define an analogous XM of Caldero-Chapton’s formula (or Palu’s cluster character formula) by using the geometric information of M. We show that XM , XM′ satisfy the mutation formula for cluster variables when M,M′ form an exchange pair, and that X? : M 7→ XM gives a bijection from the set of indecomposable rigid objects in Γn to the set of cluster variables of the cluster algebra of type Cn−1, which induces a bijection between the set of (basic) maximal rigid objects in Γn and the set of clusters. This strengths a surprising result proved recently by Buan-Marsh-Vatne [BMV] that the combinatorics of maximal rigid objects in the cluster tube Γn encodes the combinatorics of the cluster algebra of type Bn−1 since the combinatorics of cluster algebras of type Bn−1 and of type Cn−1 are the same by one of results of Fomin-Zelevinsky in [FZ2]. As a consequence, we give a categorification of cluster algebras of type C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLUSTER ALGEBRAS AND CLUSTER CATEGORIES

These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...

متن کامل

Almost Complete Cluster Tilting Objects in Generalized Higher Cluster Categories

We study higher cluster tilting objects in generalized higher cluster categories arising from dg algebras of higher Calabi-Yau dimension. Taking advantage of silting mutations of Aihara-Iyama, we obtain a class of m-cluster tilting objects in generalized m-cluster categories. For generalized m-cluster categories arising from strongly (m + 2)-Calabi-Yau dg algebras, by using truncations of minim...

متن کامل

On Cluster Algebras Arising from Unpunctured Surfaces Ii

We study cluster algebras with principal and arbitrary coefficient systems that are associated to unpunctured surfaces. We give a direct formula for the Laurent polynomial expansion of cluster variables in these cluster algebras in terms of certain paths on a triangulation of the surface. As an immediate consequence, we prove the positivity conjecture of Fomin and Zelevinsky for these cluster a...

متن کامل

Cluster tilting objects in generalized higher cluster categories

We prove the existence of an m-cluster tilting object in a generalized m-cluster category which is (m+1)-Calabi–Yau andHom-finite, arising froman (m+2)-Calabi–Yau dg algebra. This is a generalization of the result for them = 1 case in Amiot’s Ph.D. thesis. Our results apply in particular to higher cluster categories associated to Ginzburg dg categories coming from suitable graded quivers with s...

متن کامل

Cluster algebras and representation theory

We apply the new theory of cluster algebras of Fomin and Zelevinsky to study some combinatorial problems arising in Lie theory. This is joint work with Geiss and Schröer (§3, 4, 5, 6), and with Hernandez (§8, 9). Mathematics Subject Classification (2000). Primary 05E10; Secondary 13F60, 16G20, 17B10, 17B37.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 89  شماره 

صفحات  -

تاریخ انتشار 2014